Person Re-identification: What Features Are Important?
نویسندگان
چکیده
State-of-the-art person re-identification methods seek robust person matching through combining various feature types. Often, these features are implicitly assigned with a single vector of global weights, which are assumed to be universally good for all individuals, independent to their different appearances. In this study, we show that certain features play more important role than others under different circumstances. Consequently, we propose a novel unsupervised approach for learning a bottom-up feature importance, so features extracted from different individuals are weighted adaptively driven by their unique and inherent appearance attributes. Extensive experiments on two public datasets demonstrate that attribute-sensitive feature importance facilitates more accurate person matching when it is fused together with global weights obtained using existing methods.
منابع مشابه
People Re-identification in Non-overlapping Field-of-views using Cumulative Brightness Transform Function and Body Segments in Different Color Spaces
Non-overlapping field-of-view (FOV) cameras are used in surveillance system to cover a wider area. Tracking in such systems is generally performed in two distinct steps. In the first step, people are identified and tracked in the FOV of a single camera. In the second step, re-identification of the people is carried out to track them in the whole area under surveillance. Various conventional fea...
متن کاملEvaluating Feature Importance for Re-identification
Person re-identification methods seek robust person matching through combining feature types. Often, these features are assigned implicitly with a single vector of global weights, which are assumed to be universally and equally good for matching all individuals, independent to their different appearances. In this study, we present a comprehensive comparison and evaluation of up-to-date imagery ...
متن کاملSDALF: Modeling Human Appearance with Symmetry-Driven Accumulation of Local Features
In video surveillance, person re-identification (re-id) is probably the open challenge, when dealing with a camera network with non-overlapped fields of view. Re-id allows the association of different instances of the same person across different locations and time. A large number of approaches have emerged in the last five years, often proposing novel visual features specifically designed to h...
متن کاملOn-the-fly feature importance mining for person re-identification
State-of-the-art person re-identification methods seek robust person matching through combining various feature types. Often, these features are implicitly assigned with generic weights, which are assumed to be universally and equally good for all individuals, independent of people's different appearances. In this study, we show that certain features play more important role than others under d...
متن کاملGaussian Descriptor Based on Local Features for Person Re-identification
This paper proposes a novel image representation for person re-identification. Since one person is assumed to wear the same clothes in different images, the color information of person images is very important to distinguish one person from the others. Motivated by this, in this paper, we propose a simple but effective representation named Gaussian descriptor based on Local Features (GaLF). Com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012